[footnoteRef:1] [1:  Cover generated by https://orly.nanmu.me/] 



Edited by Carol Choi


Contents
Introduction	3
Query Development	3
Retrieving descriptive text for codes, an example	4
Sierra DNA database documentation	5
Joining tables	12
Rules for joining tables	16
Joining tables with a WHERE clause	16
Joining tables with the JOIN statement	20
Examples	21
Joining Data Tables	23
bib_view and varfield_view	24
bib_view, item_view, and bib_record_item_record_link	25
hold, patron_record_fullname, item_view, and bib_record_item_record_link	27
Tables often used in queries	28
Left Joins	29
left join syntax	33
Left join examples	35
Patrons and patron_addresses	35
Bibs and items	36
Further Study	37
Appendix	38
Some SQL Queries used at Watson Library	38
Address checker	38
Items checked out from book cage	40
All patrons	41



[bookmark: _Toc134536631]Introduction

This is Part 2 of a two-part course called, “Sierra + SQL.” This material focuses on using pgADMIN and Sierra documentation to develop queries that involve more than one table or, in SQL terms, multiple table JOINs. These complex queries are demonstrated through different examples.
Completion of Part 1 is prerequisite to the material in this document. The reader should:
· have installed pgAdmin
· have configured a connection to Sierra via pgAdmin
· be able to navigate the PgAdmin views
· know how to list the columns/fields in a table
· know the basic SQL syntax for SELECT, FROM, and WHERE clauses
It will be helpful if you can access pgAdmin and the online SierraDNA documentation while you are working your way through the course material.
[bookmark: _Toc134536632]Query Development

It is common practice in database design to store brief codes on data records instead of descriptive text. The descriptive text is typically stored in a separate table. This is a good starting point for learning about multi-table queries. Let’s look at a couple of examples involving code lookups in Sierra.


[bookmark: _Toc134536633]Retrieving descriptive text for codes, an example
A table that stores many fields with information about bibs is named sierra_view.bib_view. Recall from Part 1 of the course that you get a list of fields in a table by expanding Columns in PgAdmin as shown below, left.
Based on the field names on the bib_view table, several fields look like they store a short character abbreviation or number code: ‘language_code’, ‘bcode1’, bcode2’, and ‘country_code’ fields. 
This screen shot from PgAdmin shows the fields on the bib_view table, an SQL query statement that selects the code fields, and the data output when the query ran. 

[image: Table

Description automatically generated with low confidence]

Looking at the data output, it should be obvious that the language_code ‘eng’ means English and ‘ger’ means German. The meaning of other codes (‘m’, ‘a’, ‘gw’, ‘au’)  are not very obvious. Another problem is that the field names “bcode1” and “bcode2” are not meaningful. 
We will learn how to find the descriptions of those codes using the database documentation.

[bookmark: _Toc115684810]

[bookmark: _Toc134536634]Sierra DNA database documentation

Online documentation about Sierra tables, views, and relationships between tables is known as “Sierra DNA.” We will go through an exercise to research fields and table relationships using this documentation.
· Open a browser window to https://techdocs.iii.com
· Login with your library’s credentials
· Choose Sierra DNA on the left
[image: Graphical user interface

Description automatically generated]

· select Entries 
[image: Graphical user interface, text, application, email

Description automatically generated]



· select Bib. We are looking for information about codes on the bib_view table 
· select Detailed View
· scroll down to find bib_view
[image: Graphical user interface, application, Teams

Description automatically generated]
As far as the codes we are looking for are concerned, the detailed view about Bibs tells us that: 
1. the language_code is based on the MARC 21 Code List for Languages;
2. the country_code is based on the MARC 21 Code List of Countries;
3. for fields bcode1 and bcode2 it says 
“The library determines the name and purpose of this code and the code's definition.” 

· scroll down to the field marc_type_code field. This not related to our query, but worth mentioning about the documentation.
A very limited number of fields provide the possible values for a field in the detailed view. 
The documentation will list valid values in a little chart embedded in the page like this:
[image: Graphical user interface, text, application

Description automatically generated] 
 When you see presentations like this, the codes are not found in a database table.


· Scroll further down the list of tables related to Bib. They’re in alphabetical order. Eventually you should see two tables, user_defined_bcode1_myuser and user_defined_bcode2_myuser. 
The so-called “user” in the table name refers to the Sierra customer, which in our case means Watson Library! Here are the descriptions as provided in the documentation.
[image: Graphical user interface, application

Description automatically generated]
There are really only two fields we are concerned about -- the field that has the code value and the field that spells out the full code description.
It appears that in each table  “name” field contains the description. Also, the “code” fields are the ones  used to represent the field.

These codes are defined by the library to use as fields describing bib records. The documentation doesn’t tell us how Watson uses the fields. However, we have some sample data from our query that gives us some clues.
Let’s continue with our research...

Review what we know so far based on the sierraDNA documentation about Bibs: 

	bib_view field
	Characteristic
	Defined in

	language_code
	standard MARC 21 language
e.g., ‘ger’
	??


	country_code
	standard MARC 21 country
e.g., ‘gw’
	??


	bcode1
	library defined code
e.g., ‘m’
	The table user_defined_bcode1_myuser 

where
the “code” field repeats the code on bcode1
the “name” field has the meaning / description


	bcode2
	library defined code
e.g., ‘a’
	The table user_defined_bcode2_myuser 

where 
the “code” field repeats the code on bcode2
the “name” field has the meaning /description



 
Although we might assume there is a table for countries and languages, we’re still not sure about where to get descriptions for the language_code and country_code based on what we found so far. 
· Scroll down to the bottom of the Bib detail to find a link to “ERD view.” 
· Click the ERD View link.
[image: Graphical user interface, application

Description automatically generated]
· 

· The ERD View provides a high-level diagram showing the related tables.

[image: Diagram

Description automatically generated]

COUNTRY CODE
Following the lines leading off the bib_view table country_code field we learn that
 this diagram tells us that the details about the country_code may be found in the table named “country_property_myuser”

LANGUAGE CODE
Similarly, the lines leading off the bib_view table language_code field,
we find it tells us that the details may be found in the tables named “language_property_myuser”


Let’s update what we know so far about the situation. 
We found four fields on the bib_view table store codes. The sierraDNA documentation tells us characteristics about the fields and the diagram illustrates field to table relationship(s).
	bib_view field
	Characteristic
	Related table and comment

	language_code
	standard MARC 21 language
e.g., ‘ger’
	language_property_myuser

the “code” field on this table matches the code on bib_view.language_code
the “name” field has the meaning / description


	country_code
	standard MARC 21 country
e.g., ‘gw’
	country_property_myuser

the “code” field on this table matches the code on bib_view.country_code
the “name” field has the meaning / description


	bcode1
	library defined code
e.g., ‘m’
	The table user_defined_bcode1_myuser 

the “code” field matches the code on bcode1
the “name” field has the meaning / description


	bcode2
	library defined code
e.g., ‘a’
	The user_defined_bcode2_myuser 

the “code” field matches the code on bcode2
the “name” field has the meaning /description



 
Alright, now we know the connection between the bib_view table and four other tables.

MAKE A DIAGRAM
It helps to make your own diagram of the related tables, including relevant fields, and to include sample data in the diagram. You might want to create a sketch for yourself. 
As an example, on the next page we made a variation of the ERD View where we added some of the field names in each table and sample data from a known record we got from our original query.  

On the left is the bib_view table, several fields and their values are listed. 
On the right we have the four tables we determined are related, and their values. 
The ‘>>’ symbols in the middle of the diagram show exactly which fields on the bib_view are related to particular fields on the related tables.
 In this case all the bib_view code fields match up with a field named “code” on the related table. In addition, all of the fields that provide the descriptive text about the codes are named “name.”

									Related tables
	bib_view
	
	language_property_myuser

	language_code:
	ger
	>>
	code:
	ger

	
	
	
	name:
	German

	record_type_code:
	b
	
	
	

	
	
	
	country_property_myuser

	country_code:
	gw
	>>
	code:
	gw

	
	
	
	name:
	Germany

	record_num:
	1142992
	
	
	

	
	
	
	user_defined_bcode1_myuser

	bcode1:
	m
	>>
	code:
	m

	
	
	
	name:
	MONOGRAPH

	cataloging_date_gmt:
	1992-06-22 00:00:00-04
	
	
	

	
	
	
	user_defined_bcode2_myuser

	bcode2:
	a
	>>
	code:
	a

	
	
	
	name:
	Text



If you are familiar with cataloging:
· the value ‘MONOGRAPH’ (code ‘m’) should be recognizable as the bibliographic level 
· and the value ‘Text’ (code ‘a’) should be recognizable as the material type. 

You don’t necessarily need to make a detailed diagram for yourself. It is a good idea, however, to have a sample record in mind. That way you can verify you are looking at the correct information. 


Many tables in Sierra have the same sort of code fields, whether it is the patron information, orders, vendors, etcetera. You can follow the same process that was just described to research fields and table relationships for any situation.

Now that we know the related fields and tables, we are ready to write SQL queries that bring all the pieces together. Next, we will gradually build up a complete, five table query.

[bookmark: _Toc134536635]Joining tables 

First, let’s write a SQL query to retrieve the full name of the country for the sample record with 
record_num = 1142992. 

Below, we select  the fields “record_num” and “name” FROM two tables, “bib_view” and “country_property_myuser”. The criteria in the WHERE statement identifies the 
bib record number. In addition the WHERE clause  needs to tell the system how to match the tables based on the  values in the “code” fields being equal.

CREATE THE QUERY JOINING TWO TABLES

SELECT 
record_num,
name
FROM
sierra_view.bib_view,
sierra_view.country_property_myuser 
WHERE
record_num=1142992
AND sierra_view.bib_view.country_code  = sierra_view.country_property_myuser.code

The last line of the query joins the tables on the fields that we determined they have in common.

EXPAND THE QUERY TO INCLUDE LANGUAGE (THREE TABLES)
You may expand on what we’ve developed so far by bringing in the second related table. You can do that by including the table name in the FROM clause and another line in the WHERE statement that tells the system how to join the new table. 
Since the terms  ‘code’ and ‘name’ are used in all these tables, you have to help the system out by removing any ambiguity. Remove ambiguity simply by adding the table name as the  prefix every time the field names are mentioned in the query.
Another thing you ought to do is assign meaningful aliases to the fields instead of the vague label ‘name.’ As a reminder, you use the syntax fieldname AS alias, as shown below to create an alias.
Here is the previous query expanded to include the language. The fields are given appropriate aliases in the SELECT statement. Revised or additional lines have been highlighted.

SELECT 
record_num,
sierra_view.country_property_myuser.name as country,
sierra_view.language_property_myuser.name as language
FROM
sierra_view.bib_view,
sierra_view.country_property_myuser,
sierra_view.language_property_myuser
WHERE
record_num=1142992
AND sierra_view.bib_view.country_code  = sierra_view.country_property_myuser.code
AND sierra_view.bib_view.language_code  = sierra_view.language_property_myuser.code




EXPAND THE QUERY TO INCLUDE BCODE1 (FOUR TABLES)
Continuing with our same example, we add another table. Here is the previous query expanded to include the bcode1 (bib level). The fields are given appropriate aliases in the SELECT statement. Revised or additional lines have been highlighted.

SELECT 
record_num,
sierra_view.country_property_myuser.name as country,
sierra_view.language_property_myuser.name as language,
sierra_view.user_defined_bcode1_myuser.name as biblevel
FROM
sierra_view.bib_view,
sierra_view.country_property_myuser,
sierra_view.language_property_myuser,
sierra_view.user_defined_bcode1_myuser 
WHERE
record_num=1142992
AND sierra_view.bib_view.country_code = sierra_view.country_property_myuser.code
AND sierra_view.bib_view.language_code = sierra_view.language_property_myuser.code
AND sierra_view.bib_view.bcode1 = sierra_view.user_defined_bcode1_myuser.code




EXPAND THE QUERY TO INCLUDE BCODE2 (FIVE TABLES)
Here we add the fifth table to our query. Revised or additional lines have been highlighted.


SELECT 
record_num,
sierra_view.country_property_myuser.name as country,
sierra_view.language_property_myuser.name as language,
sierra_view.user_defined_bcode1_myuser.name as biblevel,
sierra_view.user_defined_bcode2_myuser.name as mattype,
FROM
sierra_view.bib_view,sierra_view.country_property_myuser,sierra_view.language_property_myuser,
sierra_view.user_defined_bcode1_myuser, 
sierra_view.user_defined_bcode2_myuser 
WHERE
record_num=1142992
AND sierra_view.bib_view.country_code = sierra_view.country_property_myuser.code
AND sierra_view.bib_view.language_code = sierra_view.language_property_myuser.code
AND sierra_view.bib_view.bcode1 = sierra_view.user_defined_bcode1_myuser.code
AND sierra_view.bib_view.bcode2 = sierra_view.user_defined_bcode2_myuser.code





MODIFY THE QUERY TO INCLUDE ALIASES FOR FIELDS AND TABLES (OPTIONAL)
Some programmers prefer to shorten the verbose field names by assigning aliases to the table names. Here is a revised script in which all tables are assigned a single letter alias in the FROM clause. Then each field is referenced by the table alias. 

-- fields and tables with alias version

SELECT record_num,
l.name as language,
v.name as biblevel,
m.name as mattype,
c.name as pub_place
FROM
sierra_view.bib_view b,
sierra_view.language_property_myuser l ,
sierra_view.user_defined_bcode1_myuser v,
sierra_view.user_defined_bcode2_myuser m ,
sierra_view.country_property_myuser c
WHERE
record_num=1142992 AND
b.language_code = l.code AND
b.bcode1        = v.code AND
b.bcode2        = m.code AND
b.country_code  = c.code


The alias may be more than one character if you prefer.
This approach of using table and field aliases is optional. If you find it confusing, use the table name prefix method in the query on the previous page.
The query output from our five table query provides the labels we chose (instead of language_code, bcode1, bcode2, and country_code) and the full text for each record rather than ‘ger’,’m’,’a’, and ‘gw’.
This is the query output:
[image: A picture containing text

Description automatically generated]

The descriptive text improves readability of the outut. Retrieving descriptive text, either in addition to or instead of code values, is a very typical use of joining tables.

[bookmark: _Toc134536636]Rules for joining tables

We saw that we matched the bib_view and related tables based on a common value between fields on the bib_view table and fields on the related tables. In general, the following rules apply when joining tables in SQL:
· The value in the field of one table must match the value in the  field of the other table. This commonality links the tables. 

· The data type in the columns on both tables must be the same. Examples of data type are integer, date, and character. If the data type is character, both fields must be the same length.

· You do not need to include the common field(s) that you use to join the tables in the SELECT statement of your query.

· The name of the column from one table can be different from the name of the matching column on the other table.

· If the name of a field on both tables is the same, it is important to prefix the field name with the table name or table alias to avoid ambiguity. 

[bookmark: _Toc134536637]Joining tables with a WHERE clause

As we have seen, you may join tables by including criteria statements in a WHERE clause that specify which fields to match. 

Let’s try a different  example, this time relating to patrons. 
NEW SCENARIO
You can look up patron p102999a, and you would find they have a Patron Type of 20. The question is, what does the code 20 mean? How do you output the descriptive text in addition to, or in place of the code?
You can approach this question using the same steps we followed in the previous example with Bib related fields and tables.


1. IDENTIFY THE RELATED TABLES AND THEIR COMMON FIELDS 
You can use sierraDNA to view the fields on any table. There you will see that the patron_view table and ptype_property_myuser table have a certain field in common. 
· go to the sierraDNA site
· click Entities
· click Patron
· click Detailed View
· scroll down to patron_view

[image: ]

The list of fields on patron_view includes a field named “ptype_code” which the comment indicates is 
the type of patron. 



Next find where ptype_codes are defined.
· scroll down the list of other patron related tables
· find ptype_property_myuser
· notice the field named “value” has a comment that says it is the patron type code
· the field named “name” contains the patron type name/description
[image: Table

Description automatically generated]

2. ADD THE FIELD YOU WANT IN THE SELECT STATEMENT AND BOTH TABLE NAMES 
TO THE QUERY’S FROM CLAUSE
When you are joining tables using a WHERE clause, you must include both table names in the FROM
       clause so the query knows where/how it will JOIN the tables.
SELECT
record_num, ptype_code, name
FROM 
sierra_view.patron_view, sierra_view.ptype_property_myuser



3. ASSIGN TABLE ALIASES 
Optionally, give the tables short alias names to make referring to them easier. 
FROM 
sierra_view.patron_view P, sierra_view.ptype_property_myuser N
4. JOIN THE TABLES ON THEIR COMMON FIELD

WHERE 
P.ptype_code = N.value

Here is a complete script that retrieves the name that corresponds to the patron type code. 
The query joins the ptype_property_myuser lookup table and the patron_view table.

[image: Table

Description automatically generated with medium confidence]
The following statements mean the same thing. The latter takes advantage of the table alias:
· sierra_view.patron_view.ptype_code = sierra_view.ptype_property_myuser.value
· P.ptype_code = N.value
Optionally, edit the query by assigning an alias for the field “name” such as “patron_type.”
[bookmark: _Toc134536638]Joining tables with the JOIN statement

The second technique for combining tables is to use a “join” statement INSTEAD OF THE WHERE CLAUSE. Here is the syntax pattern. 
SELECT field1, field2 ... fieldN   FROM table1
JOIN table2 on table1.fieldname = table2.fieldname
When using this technique, you do not list both tables in the FROM clause. 
You can assign an alias and use the alias in the JOIN statement.
Here is a revision of our patron_type query using the JOIN statement syntax.
[image: Table

Description automatically generated]
The results are the same whether you use a WHERE clause or JOIN statement. [footnoteRef:2]  [2:  There are situations where a so-called “LEFT JOIN” statement is required. This will be explained later.] 

Using the JOIN syntax is the preferred method.
[bookmark: _Toc134536639]Examples

Here are more examples of joining pairs of tables. 
Exampe 1a: using JOIN statement
Watson uses the field pcode1 on the patron_view table to identify the Institution.
SELECT
record_num, barcode, pcode1, name as Institution
FROM
sierra_view.patron_view P
JOIN sierra_view.user_defined_pcode1_myuser C on P.pcode1 = C.code
WHERE	
C.name like '%Museum%' and barcode like '2062%14'


Example 1b: using WHERE clause 

SELECT
record_num, barcode, pcode1, name as Institution
FROM
sierra_view.patron_view P,sierra_view.user_defined_pcode1_myuser C  
WHERE
P.pcode1 = C.code 
and
C.name like '%Museum%' and barcode like '2062%14'


[image: Table

Description automatically generated]
After considering this output, you might consider enhancing the query by replacing pcode1 with the descriptive text.

Example 2 using JOIN statement
Watson uses the field pcode3 on the patron_view table to identify Departments in the Museum.


SELECT
record_num, 
barcode, 
pcode3, 
name as Department
FROM
sierra_view.patron_view P
JOIN sierra_view.user_defined_pcode3_myuser C on P.pcode3 = 
cast((C.code) as int) 
WHERE	
barcode not like '2062%'and pcode3 != 1 and barcode like '%321'



This is rare, but the joined fields are different data types. One is an integer and the other is a character. The statement “cast((C.code) as int)” means treat the code as an integer.



Query output showing the department description that corresponds to pcode3:

[image: Table

Description automatically generated]



[bookmark: _Toc134536640]Joining Data Tables 

We saw that many tables provide descriptive text for codes. The purpose of those tables is not to store information about a particular thing, like a bib, item, hold, order, etc.  Other tables store that data, and so we will refer to them as “data tables.” Data tables often have a lot of fields and the information from several data tables can be combined to get a complete picture of, let’s say a patron. Joining these data tables typically involves using the record number or a system generated id number. 


[bookmark: _Toc134536641]bib_view and varfield_view

The table varfield_view stores the MARC tags, indicators, and subfields related to bib records. Each row in the table represents a tag, and the value is stored in a field named “field_content.” Here is an example of a two-table join.
[image: Table

Description automatically generated]
It is normal for some values in the field_content to contain the subfield delimiters (|a, |b, |c, etc.) as shown in the query output above.

[bookmark: _Toc134536642]bib_view, item_view, and bib_record_item_record_link

If we want to list all the items associated with a bib record one problem is that the item record does not contain the bib id number. The bib record itself does not have a list of associated items. 
The database has a table that serves to link the bib and item tables. That table is named 
“bib_record_item_record_link.”
You might picture the relationship between these three tables as illustrated in the diagram below. The diagram is similar to what you will find in sierraDNA ERD View. We added sample values for some fields which makes it a little more understandable.
The linking table is in the middle. The “item_record_id” field on the linking table matches the “id” field on the item_view (at left; note the content of the fields are the same, but the field names are different), and the “bib_record_id” on the linking table matches the “id” field on the bib_view (at right; again, the content of the fields match, but the field names are different).

	item_view

	bib_record_item_record_link
	bib_view

	
id: 1221474  < - - - - - - - - - -
	
item_record_id:    1221474
	

	item_loc: s
barcode: 30620001142719
	bib_record_id:      1115022  - - - - - - - - - - >

	id:     1115022
Title: Art in America



Relationship diagram

NOTE: If there aren’t any items linked to a bib record, there will not be a  bib_record_item_record_link. 



The following query demonstrates three table joins, and outputs fields from item_view and bib_view. It identifies bibs with items.

[image: Table

Description automatically generated]

A specific bib record was used for the query. That bib record is linked to ten items. 


[bookmark: _Toc134536643]hold, patron_record_fullname, item_view, and bib_record_item_record_link

We looked at a query for holds in Part One, Exercise 10. This is the output from that Exercise:
[image: Table

Description automatically generated]

The hold query may be enhanced by retrieving the item barcode, patron name and bib_id from other tables. A four-table join is needed. Here is the revised query and output.
SELECT 
barcode,h.id AS hold_id,id2reckey(h.record_id) AS item_id,
placed_gmt AS request_datetime,id2reckey(h.patron_record_id) AS patron_id,
last_name || ', ' || left(first_name,1) AS patronname,
id2reckey(k.bib_record_id) AS bib_id
FROM 
sierra_view.hold h
JOIN sierra_view.patron_record_fullname f on 
h.patron_record_id = f.patron_record_id
JOIN sierra_view.item_view i on h.record_id = i.id
JOIN sierra_view.bib_record_item_record_link k on  i.id = k.item_record_id
WHERE i.location_code = 'off' and placed_gmt > '2022-12-22'  
ORDER BY hold_id

Off-site holds. Detail query using JOIN statements to connect four tables

Revised data output:
[image: Table

Description automatically generated]
[bookmark: _Toc134536644]Tables often used in queries

At this point you’ve been introduced to several tables and the type of data they contain. You know how to use pgAdmin to explore the contents of the tables. Here is a reminder of some of the more useful tables.
	bib_view
	item_view

	varfield_view
	phrase_entry

	bib_record_location
	location

	bib_record_property
	patron_record_fullname

	bib_record_item_record_link
	user_defined_<x>_myuser

	patron_view
	hold





[bookmark: _Toc134536645]Left Joins

There are scenarios when using the standard Join statement results in excluding some data. 
Let’s look at an example when you need a different join statement, a “left join” statement. 
First we will look at how to get the standard join figured out in the first place.
Below you see a simple query that retrieves three fields from one table, the item_view table.

[image: Graphical user interface

Description automatically generated with medium confidence]

The data output provides an id of the last patron who checked out each item. 
In the first two rows, the value of “last_patron_record_metadata_id” is [null] indicating those items were never checked out. 
The last two items in the data output display a “last_patron_record_metadata_id” value.
Let’s suppose we want to retrieve the names of patrons who last checked out the items. 


STEPS TO FINDING THE PATRON’S NAME
If you look at the item_view information in sierraDNA, it tells you the table record_metadata connects to the system generated id, “last_patron_record_metadata_id.” 

1. The item_view description in sierraDNA says the last_patron_record_metadata_id is a “Foreign key to record_metadata (for the last patron record).” 
2. The record_metadata table stores ids of bibs, items, patrons etc. By the name of the field “last_patron_record_metatdata_id” we can be confident that the value 481036437320 is a patron’s system generated id.
3. If you use sierraDNA to browse the patron tables, you discover the patron’s name is included in a table named patron_record_fullname. 
4. You could run a quick SQL query in pgAdmin for patron_record_fullname with an id from the preceding  example,  481036437320:
[image: Graphical user interface, text, application, email

Description automatically generated]
	

We know the last_patron_record_metadata_id is a patron id, so we should be able to matchup the tables based on that id. A diagram to illustrate the relationship between the tables may help. 
You might sketch the relationship with sample data like this:

[image: ]

Now we know our standard join statement, not including table aliases. It should say: 

...
FROM
sierra_view.item_view
join sierra_view.patron_record_fullname on 
sierra_view.item_view.last_patron_record_metadata_id =
sierra_view.patron_record_fullname.patron_record_id



Here then is a query that uses a standard join between these two tables on their matching fields. The query assigns the tables aliases (‘i’ and ‘f’) for convenience. In the SELECT clause, the field named ‘id’ is given the table prefix ‘i.’ to avoid ambiguity. 

[image: Graphical user interface, text, application

Description automatically generated]


Analyze the result 
The barcodes in rows 1 and 2 of this result are the same ones in rows 3 and 4 of the original query output (30620008141474 and 30620007519175). The query returned the patron name for rows Watanabe and Kruglov.
The problem is that in the original query’s output the barcodes in rows 1 and 2 are now missing from the output of the joined table query (30620000000025 and 30620008643271). 
Instead, the system returned two other rows that it found which have items with a previous checkout. 
The item_view table had [null] values for last_patron_record_metadata_ids. There wasn’t any patron record to match. Therefore, the first two lines got dropped from the results!


Assume we intended to get all the items from item_view. Also, we want to retrieve the names of the last patrons to checkout the item AND if there is no checkout, then we want to keep the item_view record anyway.
Solution: left join
In this example you might literally picture the item_view table (the one you want all records from) as being on the left side of the equal sign in an equation. Whereas the patron_record_fullname table, which may or may not be matched, is on the right of the equal sign of a WHERE statement:
The SQL term we use to indicate we want all records on the left is “LEFT JOIN.”

[bookmark: _Toc134536646]left join syntax

As a reminder, we use a “join” statement INSTEAD OF THE WHERE CLAUSE. Here is the syntax pattern again, this time with the term “LEFT” preceding the term JOIN. 


SELECT field1, field2 ... fieldN   FROM table1
LEFT JOIN table2 on table1.fieldname = table2.fieldname

When using this technique, you do not list both tables in the FROM clause. 
You can assign an alias and use the alias in the JOIN statement.


Here is the revised query using left join (line 6 and 7) instead of the standard  join:


[image: Graphical user interface, text, application

Description automatically generated]

Success! Now we have all four of the original rows from the item_view table. The first two rows in the output show the last_patron_record_metadata_id and last_name values as [null], which is correct.
The original rows 1 & 2 were not dropped from the output.
Lines 3 and 4 include the last name of the patron which checked out the item.

[bookmark: _Toc134536647]Left join examples

[bookmark: _Toc134536648]Patrons and patron_addresses

Here is an example of using a LEFT JOIN between patrons and patron_addresses.

SELECT 'p' || record_num || 'a' as patronid,addr1
FROM
sierra_view.patron_view p
LEFT JOIN sierra_view.patron_record_address a
          ON p.id = a.patron_record_id
WHERE
ptype_code = 6
LIMIT 10

[image: Table

Description automatically generated]

Notes: The patron on line 3 does not have an address, but because the ‘left join’ statement is used the record was not excluded from the output. 

Patrons on line 1 and 8 have the city, state, and zip code all in the addr1 field. This should be corrected. There are separate fields for city, state, and zip code.




[bookmark: _Toc134536649]Bibs and items

Here is another typical example of using a LEFT JOIN connecting bib_view, bib_record_item_record_link and item_view.
SELECT 
b.record_num as bibid,title,i.record_num as itemid, barcode
FROM
sierra_view.bib_view b
LEFT JOIN sierra_view.bib_record_item_record_link k 
          ON b.id = k.bib_record_id
LEFT JOIN sierra_view.item_view i 
          ON i.id = k.item_record_id
WHERE
title like 'Burea%and%'

[image: Graphical user interface, text, application, email

Description automatically generated]

Notes: The bib records on lines 2 and 4 do not have items attached, but because the ‘left join’ statement is used the records were not excluded from the output. 

If you do not include a left join between item_view and bib_record_item_view link lines 2 and 4 would be excluded from the output.

Electronic Resources do not normally have an item with a barcode, so this is correct.

Bib id 1048954 on lines 5 and 6 is listed twice, one row for each item.


[bookmark: _Toc134536650]Further Study

You have completed a basic, introductory level course on SQL queries with the Sierra database using pgAdmin.
Here is a list of several resources you can use if you find you require something more sophisticated than a basic query.
· See the Appendix of this document for a few examples of slightly more complex SQL queries we use in Watson.
· If you have access to the Systems folders on the shared drive, you can find examples of complex SQL queries in the course materials from the Innovative SQL Workshop and from IUG Conferences. 
· SY_Systems > SY_Hardware and Software > Innovative > Sierra > SierraDNA SQL
· Adv_SQL_Workshop_Queries.txt
· Sierra_SQL_Workshop_2.pdf
· SierraAdvancedSQLcourse.docx
· IUG 2017 – Sierra Direct SQL Access – Davidson and Matta.pptx
· IUG 2021 – SQL – Jeremy Goldstein.pptx
· WILIUG_Sierra_Direct_SQL_Access_101_PPT_061214.pdf
· If you are able to attend a follow up “SQL Jam” hands-on workshop, you will be able to try some multi-table join exercises.


[bookmark: _Toc134536651]Appendix

[bookmark: _Toc134536652]Some SQL Queries used at Watson Library
[bookmark: _Toc134536653]Address checker

SELECT DISTINCT
    v.id as system_id,
    checkout_total,
    'out',
    checkout_count,
    to_char(activity_gmt, 'YYYY') as recency,
    -- searchable id, where a is a wildcard replacing the check digit
    '.p' || v.record_num || 'a' as patron_rec_id,
    UPPER(first_name) as first_name, 
    UPPER(last_name) as last_name, 
    CASE
WHEN (addr2 ISNULL AND city ISNULL AND region ISNULL and 
   postal_code ISNULL)
        THEN 'ADDRESS NEEDS UPDATE'
        WHEN (LENGTH(addr2) > 2 AND LENGTH(city)=2) THEN UPPER(addr2)
        WHEN (city = 'NY') THEN 'NEW YORK'
        WHEN (city ISNULL) THEN 'ADDRESS NEEDS CITY'
        ELSE 
        UPPER(city)
        END as city,
    CASE
        WHEN region > '' THEN regexp_replace(region, '\.', '', 'g') 
        WHEN (LENGTH(city)=2 AND addr2 >'') THEN UPPER(city)
        WHEN city = 'New York' THEN 'NY'
        ELSE
        UPPER(region)
    END AS region,
    CASE
    WHEN (country ISNULL) THEN 'United States'
        ELSE
        country
    END AS country,
    postal_code,
    -- calculate the status
    CASE
        WHEN expiration_date_gmt isnull THEN 'ACTIVE'
        WHEN expiration_date_gmt > NOW() THEN 'ACTIVE'
         ELSE
            'EXPIRED'
    END as status
    FROM
    sierra_view.patron_view v
    JOIN sierra_view.patron_record_fullname n   
        ON v.id = n.patron_record_id
    JOIN sierra_view.user_defined_pcode1_myuser q   
        ON v.pcode1 = q.code
    JOIN sierra_view.user_defined_pcode2_myuser r   
        ON v.pcode2 = r.code
    JOIN sierra_view.record_metadata m   
        ON v.id = m.id
    -- some records, might not have a patron address 
    LEFT JOIN sierra_view.patron_record_address a   
        ON v.id = a.patron_record_id
    WHERE
    v.ptype_code in ('6')
    AND m.record_type_code='p'
    ORDER BY recency 
    limit 30000

[image: Table

Description automatically generated] …
…[image: Table

Description automatically generated]…
…[image: Table

Description automatically generated]

[bookmark: _Toc134536654]Items checked out from book cage

SELECT
i.record_num as item_record_num,
i.barcode as item_barcode,
i.record_creation_date_gmt as item_created,
b.record_num as b_record_num,
b.country_code,
b.language_code,
b.title,
checkout_gmt,
p.record_num as patron_record_num,
p.id as patron_metadata_id,
i.last_checkout_gmt, 
i.last_patron_record_metadata_id
FROM
sierra_view.checkout c,
sierra_view.patron_view p,
sierra_view.item_view i,
sierra_view.bib_view b,
sierra_view.bib_record_item_record_link k
WHERE
c.item_record_id=i.id
and
c.patron_record_id=p.id
and
i.id=k.item_record_id
and
b.id=k.bib_record_id
and
i.location_code='bc'
and 
checkout_gmt > '2022-12-20'

[image: Table

Description automatically generated]
[bookmark: _Toc134536655]
All patrons
SELECT
v.field_content as barcode, 
v.record_num as recno, 
CASE
WHEN COALESCE(to_char(expiration_date_gmt, 'YYYY-MM-DD'), '')  
 >  '2022-11-04' 	
 	 THEN 'A' 
 WHEN COALESCE(to_char(expiration_date_gmt, 'YYYY-MM-DD'), '') 
 = '' 	
 THEN 'A' 
 ELSE 'XX'  
END as stat, 
CASE 
WHEN 	ptype_code = 6  	
THEN 'VR' 
ELSE 'S' 
END as ptype, 
pcode1 as aff, 
pcode2 as grp, 
pcode3 as dept 
FROM
sierra_view.patron_view p, 
sierra_view.varfield_view v 
WHERE
p.record_num = v.record_num 
and v.record_type_code= 'p' 
and  v.varfield_type_code ='b'

[image: Table

Description automatically generated]
Page 2 of 2

image3.png
Beginners Guide

SO

L
9]
=
i
b
i

S

Part2

Michael Cummings

O'RLY?




image4.png
s




image5.png
> 1) UIL_IELOI_piope Ly

> 18] bib_record_volume_record_ink & | eummimesiera v .8
« (8 bib_view mBv /Yy omt - @ rvE @SS o
13 Ealmms ) | Query  Query History
g
8 record_type_code gl SELECT
2 record_num,language_cods,bcode1,bcads2, country_code
§ record_num
3 from

i language_code 4 sierra_view.bib_view
5 beodet 5 where
5 boodez & cataloging_date_gmt > '2023-04-16'
5 boodes
5 country_code
5 is_available_at library
B index_change_count Dataoutput  Messages  Notifications
5 allocation_rule_code

= v s
8 is_on_course_reserve + B vOE 88|~
§ ie_rightresult.sxact fordum o angusgesade o bosdel o boode2 g caunmysede o

integer charactervarying (3) 8 character (1) 8 charactervarying (3) B character varying (3)

5 skip_num

1 2164602 ger m a ow
5 cataloging_date_gmt

2 2154600 eng m a ow
5 mare_type_code

B 2154508
g tile ger m a aw
5 record_creation._date_gmt 4 21545 | oer " ? 3“

5 21545%  eng m a ow

> [0 Rules





image6.png
ill innovative

Part of Clarivate

TechDocs

Welcome MET | Logout

Go to Supportal

S UALK LU e LULS

sierraDNA

Sierra WebHelp

Sierra REST APT

Entities Bib
Generic Record

Authority
Sierra and Millennium

Contact

Course

Holding





image7.png
< C (Y & techdocsii.com/sierradna/Content/introduction.htm

® ¥ D*»0@ :

sierraDNA Search Q
imtoduction Introduction to SierraDNA » A
Entities

The Sierra Senices Platform incorporates a PostgreSQL relational database that captures the library's material, circulation, patron, financial, and operational data. A collection of
database views provides direct access to the library's bibliographic and transactional data. Each view is constructed from one or moe tables and can be queried as a single table
Views are read-only.

Transactions

The SienraDNA manual provides documentation of all views and their constituent columns. In addition to view and column descriptions, it includes an entity relationship diagram
(ERD) for each view group. Each record type (for example, bibliographic, item, patron, and 50 on) is a view group. Transaction data includes acquisitions and circulation view groups.
Master Data Master data includes a variety of information such as categorization, location, and system configuration view groups.

For information on using creating custor reports and query examples, see Siera Direct SOL Access © in the Sierra WebHelp
Legal Notices

2022 Innovative (Part of Clarivate




image8.png
sierraDNA

Introduction

Entities.

Generic Record
Authority
Bib
Contact
Course
Holding
Invoice
tem
License
Order
Patron
Program
Resource

Section

bib_view

Each row of bi
handles the record.

Column DataType | Not Comment
NULL?

record_type_code
record_num
language_code
beode1

beode2

beode3

country_code

bigint
char

int
varchar
char
char

char

varchar

false.

false.

false.

false.

false.

false.

false.

false.

Search Q

view includes metadata for one bibliographic record. The metadata includes identification and status information, as well as data that determines how the system

System-generated sequential ID.

Record type code, i.e
Record number
Language of the material. LANG is based on the MARC 21 Code List for Languages (also used by UNIMARC format)
The library determines the name and purpose of this code and the code’s definition

The library determines the name and purpose of this code and the code’s definition

The library determines the name and purpose of this code and the code’s definition

EXCEPTION - The system uses bcode3 'c'to suppress the display of the associated order record in the public catalog

Country of publication. COUNTRY is based on the MARC 21 Code List of Countries, or ISO 3166/MA standard for
UNIMARC systems.




image9.png
marc_type_code char false. Identifies whether the record is in MARC 21, Chinese MARC, UNIMARC, or UKMARC format. Used in organizations with
authority records in formats other than MARC 21

<blank> MARC 21
c Chinese MARC
u UNIMARC

k UKMARC




image10.png
user_defined_bcode1_myuser

Each row of user_defined_bcode1_myuser identifies a user-defined fixed-length field for bibliographic records.

fet e Nt

code varchar  false User-defined code to represent the user-defined field
user_defined_category_id int false Foreign key to user_defined_category.

display_order int false Integer to manage the display order of a list

name varchar  false The user-defined name assigned to the user-defined field

user_defined_bcode2_myuser

Each row of user_defined_bcode2_myuser identiies a user-defined fixed-length field for bibliographic records.

fet e Nt

code varchar  false User-defined code to represent the user-defined field
user_defined_category_id int false Foreign key to user_defined_category.
display_order int false Integer to manage the display order of a list

name varchar  false The user-defined name assigned to the user-defined fild.




image11.png
i
Contact
Course
Holding
Invoice
tem
License
Order
Patron
Program
Resource
Section
Vendor
Volume.

Users.

display_order int false Integer to manage the display order of a list

name varchar  false The user-defined name assigned to the user-defined fild.

user_defined_bcode3_myuser

Each row of user_defined_bcode3_myuser identiies a user-defined fixed-length field for bibliographic records.

fet e Nt

code varchar  false User-defined code to represent the user-defined field
user_defined_category_id int false Foreign key to user_defined_category.
display_order int false Integer to manage the display order of a list

varchar  false The user-defined name assigned to the user-defined fild.

[ ERD View




image12.png
sierraDNA

Introduction

Entities.

Generic Record
Authority
Bib
Contact
Course
Holding
Invoice
Item
License
Order
Patron
Program
Resource

Section

Transactions
Master Data

Legal Notices

I

material_code

bib_level_code

country_code

language_code

location_code

beodet

beode2

Searc

T

RN ERE

T





image13.png
record_nun| Language | biblevel |nattype|pub_place|

| 1122992 ]German  |HONOGRAPHIText  IGernany |




image14.png
sierraDNA

Search

patron_view

Each row of patron_view includes metadata and data for one patron record. The contents include identification and descriptive
information, as well as data that determines how the system handles the record

NOTE: This view does not include virtual patron records associated with INN-Reach transa

Column DataType | Not Comment
NULL?

bigint false
record_type_code char false
record_num int false
barcode varchar  false
Btype_code int2 false

ions.

System-generated sequential D
Record type code, ie., p’
Record number.

The patron's barcode

The type of patron. Used to define groups of patrons that may have
different borrowing privileges. The library defines plype codes and
definitions,




image15.png
plype_property_myuser

Each row of pijpé_property_myuser identiies a patron type, with the patron type name/description presented in the language
associated with the user’s login account. Each library determines its own patron type names

o

value int2 false Patron type code (0-255)

tagging_allowed boolean  false Specifies whether community tagging is allowed for this
patron type

display_order int false Integer to manage the display order of a list

is_force_right_result_exact_allowed boolean false ‘Specifies whether the patron type can promote

RightResult relevancy for items in search results

is_comment_auto_approved boolean ~ false Specifies whether community comments are auto-
approved for this patron type

Pype_category_id int false Foreign key to ptype_category.

name varchar  false Patron type name/description.





image16.png
Query  Query History

1 select
2 record_num,

3 ptype_code, name

4 fron

5 sierra_view.pstron_view P, [Siarra_view.ptype_property_mjuser N
¢ wherd

7 record_num between 102976 and 103800

8 and

9 P.ptype_code = N.value

10

1

Dataoutput  Messages  Notifications

EN I -

recard_num _ ptype cade _ name

integer 8 smaiint 8 charactervanying (265) &

1 102670 T Starf/woc/sop
2 102071 o visitor

B 102073 o visitor

4 102076 o visitor

5 102077 o visitor

6 102082 o visitor

7 102984 o visitor

° 102985 o visitor

B 102088 10 Volunteer/osop
10 102002 o visitor

n 102905 o visitor

12 102906 o visitor

1 102999 20 Library Staft

14 103000 6 Visitor




image17.png
Query  Query History

select

record_num,

ptype_code, name

from

sierra_view.patron_view P

Join sierra_view.ptype_property_yuser N on P.ptype_cods = N.vslue
where

record_num between 162970 and 103999

Dataoutput  Messages  Notifications

E I -

recard_num _ ptype cade _ name

integer 8 smaiint 8 charactervanying (265) &

1 102670 T Starf/woc/sop
2 102071 o visitor

B 102073 o visitor

4 102076 o visitor

5 102077 o visitor

6 102082 o visitor

7 102984 o visitor

° 102985 o visitor

B 102088 10 Volunteer/osop
10 102002 o visitor

n 102905 o visitor

12 102906 o visitor

1 102999 20 Library Staft

14 103000 6 Visitor




image18.png
Dataoutput  Messages  Notifications

+ B v 0§ 8 2|~

recardnum . barcade peadet nstitution

integer B charactervarying (512) 8 character (1) 8 charactervarying (265) 8
1 105014 20620000023614 n Metropolitan Museumn
2 108072 20620000070814 n Metropolitan Museumn
B 105281 2062000006091 n Metropolitan Museumn
4 100205 20620000072414 n Metropolitan Museumn
5 140745 2062000020814 n Metropolitan Museumn
6 145349 20620000240714 i Museum of Modem Art
7 109616 2062000107814 B Brookiyn Museun
° Tie8se 2062000012431 B Brookiyn Museun
B 122073 20620000201914 1 Amer Museum Of Nat




image19.png
Data output

2
2
s
s
5
7
e
5

&0

recard_num
integer é

136098
142626
146147
130232
106452
073
Taado
121545
143186

Messages  Notfications

barcode g oo
character varying (512) 8 smallint

72002321
asa21
a2
a100s321
#1004321
a1
72321
764221
12321

L]
£
El

8
21
21
61
52
53
58

department
charactervarying (255)

L]
Objects Conservation
Membership

MCRW

Education

Education

‘Scientific Research
Watson Library

Digital

Security




image20.png
Query  Query History

1 SELECT

2 b || b.record_num || 'a' as bibid, language_code,

3 marc_tag,varfield_type_code,field_content

4 FROM

5 sierra_view.bib_view b

6 join sierra_view.varfield view v on v.record_id = b.id
T WHERE

8 marc_tag < '100"

S and

10 b.record_num = 2107846
11 ORDER BY marc_tag
12

Dataoutput  Messages  Notifications

+ RvO § 8 3~

blbld language_code mare tag varfleld_type_code . fild_content
tet B charactervarying (3) B charactervarying (2) 8 character (1) © character varying (20001)
1 w207 eng 001 o 1269505919
2 w207 eng 003 ¥ ocaLe
3 w2074 eng 005 ¥ 20220612084649.0
4 b207e4.  eng 010 | 22021907645
5 b7 eng 015 | 1a6BC1ET724[26n0
6 o207 eng 020 i a164423049¢a(rc)
7 b20784.  eng 020 i a9781644230497a(c)
8 b207s4.  eng 040 ¥ I8N BT benolerdalcF MG aFAal
5 b7 eng 050 3 JaN4295]0.652 2021
1 b210784.  eng 022 ¥ 4707 41223/eng 20210927
N b2t07s4. eng 0% < JaN4295]0.652 2021




image21.png
Query  Query History

join sierra_view.bib_record_item_record_link k on b.
join sierra_view.item_view i on k.item_record_id = i.id

Notifications

tem barcede
character varying (1000)

3062000142715

2620000952502
2062000095251
2620000952520
2062000095537
20620000952 545
2620000958552
2620005452847
2062000096052

1 seect
2 b.record_nun as bib_id,
3 H.record_nun as iten_id,
4 barcode as item_barcode,
5 losstion_code as ften_toc,
€ lest_checkout_git,

7 checkout_total,
& vitls
3 FROM

10 sierra_view.bib_view b
1
2
13 wHeRE
14 b.record_nun1115022

Dataoutput  Messages
+ v 0

bl e
integer 8 infeger 8

1 Hise 1221474

2 Hise22 1220009

B Hise2 1220010

4 ise 1200011

s Hise 1200012

o Hise 1200013

7 Hisi 1200014

B Hise 2433070

f Hise 1221195

10 msozz 12202

0620000960574

tem_Joc:
character varying (5)

s

s

s

-bib_record_id

last_checkout gmt

timestamp with time zone

20170411 15:56:0104
2012.001 08:54:62.08
2012.001 08:54:36.05
2019.027 09134204
20211028 09.04:64-04
2012.0809 0951:62.04

thie
character varying (1000)

a8
Artin America
Artin America
Artin America
Artin America
Artin America
Artin America
Artin America
Artin America
Artin America

Att in America




image22.png
Dataoutput  Messages  Notifications

S BRv0 8 8 3~

hald_Jd atron tem laced_gmt
8 P 8 placedg

bigint character varying character varying é timestamp with time zone a8
1 30627 pras7se bi51197 20221220 09:20:45.05
2 329620 pl4sass 2066220 20221220 09:24:46:05
B 2329645 150560 2029296 20221220 10:18:52.05
4 330655 p149213 02005991 20221220 10:54:16:05




image23.png
Data output  Messages  Notifications
+ B vO® ~
barcode hald g
character varying (1000) 8 bigint @
1 ae20002610408 229021
2 ae2o007izent 329943
3 ae2o0ri2ee7en 320048
4 30620006419500 229951
5 2020010629441 320955
6 20620006081 840 320957
7 3050007535783 320960

tem Jd

character varying

o277
1287790
1620404
1993820
2250490
150702
1084204

request datetime

timestamp with time zone

20221222 1651:1108
20221223 09:20:20.08
20221223 10420208
20221223 1113:22.08
20221223 11:26:22.08
20221223 11:41:25.08
20221223 11:50:47.08

patrand

character varying

p108797
p100170
p102002
p132790
pronss2
p101730
p101730

patranname
text

Rado, M
Yen-Lewis, H
Warshaw M
GuidelliGuid.
Olsan, R
Poser M

Foser M

bib_le
character varying

bi6s42es
bi0s2161
b424022
b16Ress
b1911227
b1384028
b1275020




image24.png
Query  Query History

1 select id,barcode,last_patron_record_metadata_id
2 from sierra_view.item_view
3 limit 4

Dataoutput  Messages  Notifications

= B0 S &~

id g bercode g lestpetion_recordmetadate id o
bigint character varying (1000) ! bigint

1 450972566086 3062000000025

450072566089 3062008643271
450073648191 30620008141474 481036437320

e

450972566103 30620007519175 481036442709




image25.png
Query  Query History

SELECT
patron_record_id,

first_name,

1last_name

FROM,
sierra_view.patron_record_fullname
WHERE

patron_record_id = 481036437320

@ e W e

Dataoutput  Messages  Notifications

= B0 S &~
paton recordd g frstname g lstoame a
St character varying (500) 8 cnaracter vanying (500)

1 481036437320 Masako Watanabe




image26.png
id

last patvon cecurd-webndobyd}

aon- recsrd Aullname
patron cecord <

lostasme

¢ 98103437300
Watanabe

: 4S5 g1

007 477320

e 2




image27.png
Query  Query History

select

i.4d,

barcode, last_patron_record_metadata_id,

1last_name

from sierra_view.item view 1

join sierra_view.patron_record_fullname f on
1.last_patron_record_metadata_id = f.patron_record_id
Timit 4

@ e W e

Dataoutput  Messages  Notifications

R0 8 s 2|~

id g | bercode g 'astoatron_record metadata id g lastname 8
bigint character varying (1000) © bigint character varying (500)

1 450973648191 30620008141474 481036437320  Watanabe

2 450972566103 | 30620007519175 481036442709 Krugiov

3 450972566088 3062000000033 481036455222 Bemstein

4 450972566184 30620009389205 481036452762 Senkevitch




image28.png
Query  Query History

select

i.4d,

barcode, last_patron_record_metadata_id,
1last_name

from sierra_view.item view 1

sierra_view.patron_record_fullname f on
last_patron_record_metadata_id = f.patron_record_id
limit 4

@ e W e

Dataoutput  Messages  Notifications

+ RvO § 8 3~

ia g barode g 'astpatron_record_metadata id g last name 8
bigint character varying (1000) © bigint character varying (500)
1 450972566086 3062000000025

450072566089 3062008643271
450073648191 30620008141474 481036437320 Watanabe

- woN

450972566103 30620007519175 481036442709 Kruglov




image29.png
Data output
= B0

text

patranie

pi0sassa
p13791%
pi12462a
pi12462a
p1226950
p2723a
p1010122
p10745%
p116%87a
p116%49a

Messages  Notfications

= s o~

addrt
character varying (1000)

500172 East 84t Street #2A New York, NY 10028
43 Royal Way

0w 15t St AT
2145 44th Drive, #PHC

123W 121 Stest

1100 Madison Avenue

200 East 04t Strest #1712 New Yor, Y 10122
100 sherman avr 302

1299 1t Ave




image30.png
Data output

= B0

bible
integer

L]
1572425
1641012
1684029
1625610
1048084
1048084

Messages  Notfications

S 8|~

e temid barcade

character varying (1000) 8 eger B charactervarying (1000) 8
Burea of the centre for the study of surealism and is legacy 1000107 3062004222002
ureancracy and bureaerats n Merin iy 17421235 elecronicresaurs] |
Bureaucracy and the state n eariy China : goveming the westem Zhou 1999306 3062006470768
uteauatsnd ety i th Ot E s SBGGesOuGl e st W) L
Bureaucratizing the muse - public funds and the cultural wrker 1603654 30620007042531

Bureaucratizing the muse : public funds and the cultural worker 1533289 30620000249929




image31.png
Data output  Messages

&0

system_o
bigint é

4810364382t
42103643841
4810364386¢

Notifications

s s
checkaut sotal
integer é
12
2
12

~

2calumn?
text

out
out

out

checkaut ool fecency o patron_sec_id

integer

text text 8
2002 p1011238
2002 p1012158

2003 p1014903




image32.png
firstname
text

YASMIN
Lee
LaRa

last name
é text

ELSHAFE|
VANDERY.
NIEMIRA

oty
text

NEW YORK.
ADDRESS NEEDS UPDA.
NEW YORK.

reglen
text

Ny

Ny

country
character varying

United States
United States
United States




image33.png
pastal code 8 e g
character varying (100) B text

10019 EXPIRED
EXPIRED
10021 EXPIRED




image34.png
Data output  Messages

+ BvO|§ a2
em secard J Item aroode
integer
1557454 20620003120374
2200544 20620010735544
1557450 20520003120317
1557453 20520003119848

Notifications

~

tem _created

20040525 15:20:00.04
2015.0206 16:24:00.08
20040526 15:22.00.04
20040526 1517:00.04

b record_num
character varying (10 timestamp with time zone integer

nmn
nmn
nmn
nmn

cauntry_cade language.cos title
character var eharacter var charactervar fimestamp with time zone

nyu
nyu
nyu

nyu

eng
eng
eng

eng

checkaut gmt

View 20221222 15:20:46.05
View 20221222 15203208
View 20221222 15:20:42.08
View 20221222 15203208

7
patran_reca
integer

150502
1650502
1650502
1650502




image35.png
Dataoutput ~ Messages  Notifications
= BvO s s ~
barcode reena
character varying (20001) 8 integer 8
1 20620000095563 105885
2 ossse: 105885
2 71007702 107343
FRERREST 127919
5 20620000028416 100615
6 tese 100615
7 e 12483
8 20620000192840 123695
o 1oea 123695
0 2167 127228
N 20620000215674 127228

stat

xx
xx
xx

I

prype
text

W
W
s

W
s

s

W
W
W
W
R

att
B Cnaracter(1) 8

e

e

op
character

0
0

z

8

dept
smallint

L]
1
1
£

1
28
28




image1.png
Beginners Guide

SO

L
9]
=
i
b
i

S

Part2

Michael Cummings

O'RLY?




image2.png
s




